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Abstract

Finite element models are often developed for load validation, structural

certification, response predictions, and to study alternate design concepts. In rare

occasions, models developed with a nominal set of parameters agree with experimental

data without the need to update parameter values. Today, model updating is generally

heuristic and often performed by a skilled analyst with in-depth understanding of the

model assumptions. Parameter uncertainties play a key role in understanding the model

update problem and therefore probabilistic analysis tools, developed for reliability and

risk analysis, may be used to incorporate uncertainty in the analysis. In this work,

probability analysis (PA) tools are used to aid the parameter update task using

experimental data and some basic knowledge of potential error sources. Discussed here

is the first application of PA tools to update parameters of a finite element model for a

composite wing structure. Static deflection data at six locations are used to update five

parameters. It is shown that while prediction of individual response values may not be

matched identically, the system response is significantly improved with moderate

changes in parameter values.

Introduction

Numerous algorithms have been proposed to reconcile differences between

behavior prediction from dynamic models and experimental data. Although this has been

a very prolific area of research, no single technique has been universally accepted. One

common flaw in many of the approaches is attempting to find a non-existent "single

solution" to a problem. Often sensitivity information is provided to judge the relative

importance of parameters and to assist in making model changes. These tools, in the

hands of experienced engineers, provide heuristic approaches to model updating that

work very well for problems with a small number of parameters. Published work in this

area is quite extensive, and some of the most promising of the recent contributions are in

Refs. [1-4]. Hasselman in Ref. 1, discussed propagation of parameter uncertainty in

frequency response calculations and presented various approaches to handle variability of

response values near dynamic resonant conditions. Herendeen and co-workers Ref. 2

discussed a mathematical procedure using optimization to conduct analysis/test

correlation studies of frequency response data. Their technique sought to adjust finite
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element model parameters to correlate with observed frequencies and mode shapes. An

error localization approach was used to detect trouble areas in the model. Changes in the

model were made in such a way that parameter changes were minimized. Alvin in Ref. 3

extended a procedure developed by Farhat in Ref. 4 to improve convergence of Farhat's

approach and to incorporate uncertainty information into the estimation process. Results

for the sample case showed excellent correlation of frequencies and modal assurance

criteria even for cases with a relatively large number of modes.

Although some newly developed techniques incorporate response or parameter

uncertainty to some extent, one aspect of the problem that is often overlooked is the fact

that engineers can provide uncertainty information about the parameters used in the

model. This information resides with the modeler and is seldom used to guide the

analysis. Parameter uncertainty is precisely what probabilistic analysis, Ref. 5-6,

captures well and when used in conjunction with conventional finite element analysis can

guide the analyst to determine modeling errors. A commercially available computer

program called UNIPASS, discussed in Ref. 7, will be used for all numerical results

discussed later. Tools like this one are there to help the analyst but he/she still needs to

select which parameters are likely to be in error. PA provides results in terms of

distribution functions, adding a new dimension to the solution. A fundamental difference

between PA approaches and those presented in Refs. [1-4] is that in PA techniques, the

objective function maximizes the probability that a certain condition will occur as

opposed to minimizing the prediction error. Both of these objective functions are

important and should be addressed in any model update problem but the means to address

each one would dictate how the parameters are updated.

The work described in this paper uses probabilistic analysis to determine

parameter changes that are most likely to cause predictions to agree with experimental

results. To demonstrate the procedure using models created with finite element tools, a

test-case of the NASA Dryden Flight Center Aerostructure Test Wing (ATW) will be

discussed. This model had several areas where model parameters were uncertain and

predictions from the finite element model were in error. Analysis of the ATW allows

incorporation of static test data into the update process. A brief description of the

application of probabilistic analysis for model updating is presented in the next section.

Application of Probabilistic Analysis Tools to Model Update

Although PA tool have been used extensively in manufacturing, it has not been

used for parameter updates. Before using these tools for parameter updates, one needs to

understand their meaning within the reliability framework to be able to interpret results

for the model update problem. To clarify this point, Fig. 1 depicts a fictitious reliability

problem in terms of two variables x and y, with joint probability density function

contours f(x,y)=const., and a limit state function g(x,y)=x-y=O. Probability density

contours are monotonically decreasing away from the center, which corresponds to the

maximum value. For reliability analysis, any pair (x0, Y0 ) such that g(x 0, Y0) -< 0

represents a failed condition in the failure domain. Among all the points corresponding to

fail conditions the one with the highest failure probability is denoted as the most probable

point (MPP). This MPP provides not only the probability of failure but also the parameter

values that are most likely to cause the failure. In this simple example, the failure

probability is given in a mathematical form as,
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= p(g(x, y) < O) = _g(x, y)f(x, y)dxdy (1)Pz
R2:g(._,y)<_O

where the integration is over the failure domain.

For model update, the freedom in defining the limit state function is used to

evaluate the probability that certain parameters are responsible for erroneous predictions

in the analysis. To explain how this is accomplished for a dynamic problem, assume that

a limit state function is defined as the difference between a measured and a predicted

natural frequency. Furthermore, the analyst suspects that a certain thickness parameter is

in error and is able to provide a general description of the probability distribution

function for the thickness. PA computes the MPP thickness value that would cause test

and analysis to agree. Also computed is the probability of this condition being true given

the original distribution for the parameter in question. If the thickness parameter is not

responsible for the frequency errors, the corresponding probability value should be small.

The converse statement is not necessarily true, that is if the probability is high, this could

indicate that this is one of many possible causes but not necessarily the only cause. At

this point the analyst would need to examine the required changes in parameters to

determine if the changes are reasonable and rule out parameters that are not affecting the
solution.

Description of Aerostructure Test Wing (ATW)

NASA Dryden Flight Research Center formulated an approach to predict stability

margins in flutter analysis called the flutterometer. This tool represents a departure from

traditional approaches in that it uses both analytical models and flight test data

simultaneously. In order to validate the flutterometer, a flight experiment called the

Aerostructure Test Wing (ATW) was initiated. The ATW, shown in Fig. 2a, consist of a

NACA 65A004 airfoil, a fiberglass cloth skin, and internal spar web. During flight tests,

the ATW will be mounted on the NASA Dryden F-15B Flight Test Fixture. This fixture

is located under the F-15B fuselage, as shown in Fig. 2. The flight test program will fly

the ATW to flutter at about Mach 0.8 at 10,000 Feet.

As shown in Fig. 2b the ATW has a wing area of 197 in 2 and an aspect ratio of

3.28. Internally, the spar at 30% chord line is one ply 0.005" thick of graphite/epoxy

M55J-24K at the tip and l0 plies 0.05" thick at the root. The wing core is made of rigid

foam. The wing has a semi-span of 18 inches, a root chord of 13.2 inches, and tip chord

of 8.7 inches. The total weight of the wing is 2.66 pounds. A 1-inch diameter boom

made of graphite/epoxy is attached to the wing.

ATW Finite Element Model

A Finite Element Model (FEM) of the ATW was constructed using

MSC/NASTRAN. The FEM, shown in Fig. 3, has 265 grid points with 1590 degrees of

freedom. Quadrilateral CQUAD4 elements are used to model the composite wing skin,

spar cap, spar web and ribs. The wing foam core is modeled using CHEXA and CPENTA
solid elements. Bar elements are used to model the boom. Concentrated masses are

modeled using CONM2 elements including the forward, middle and aft-boom mass, wing

mounting fixture mass and wing leading edge balancing masses. PCOMP cards in

MSC/NASTRAN are used to specify the properties of the composite lay-ups. The wing



root is fully constrainedat 16 grid points with RBE2 rigid elementsand 6 CELAS1
springelementslocatedat the sparcenterline(30 % cord). Isotropicmaterialproperties
are included in MAT8 cards for the sparcap, sparweb, and the skin. MAT1 linear
isotropic materialpropertiesareused for the rest of the structuralcomponents.RBE2
rigid elementsconnecttheaileronto thewing.

For the PA studies,uniform distribution functions were used to describethe
Young's modulus for the spar, skin, foam core and the root bending spring. Other
parameterssuchas skin thicknessand ply angleswere ruled out early in the analysis
becauseof their small influenceon theoverall stiffness.Thefollowing sectiondescribes
resultsfrom experimentalteststhat form thebasisof ourinitial study.

ATW vibration and proof load tests

Prior to certifying the ATW configuration for flight, several static and dynamic

tests were performed. Load certification up to 125% of design limit loads were

conducted both in bending and torsion. Dynamic tests were also conducted to correlate

frequencies and mode shapes with test data, those results will be discussed elsewhere.

Detailed test procedures and configuration were documented in an internal NASA

Dryden test plan, Ref. 7, but some of the conditions related to the model update effort are

presented herein.

To verify the stiffness predictions with the finite element model, two test

configurations were used. For bending, discrete point loads were applied at 19 different

locations, as shown in Fig. 4, with corresponding pressure values given in Table 1.

Figure 5 is a side view photograph of the bending test set-up. For torsion, a 10 lb weight

was suspended from the front of the boom (front view shown in Fig. 6). Displacement

data was measured using linear variable differential transducers (LVDT) at 8 locations on

the wing for both load cases. Figure 4 also shows sensor locations labeled with numbers

within squares ranging from 1 to 110. Table 2 shows the measured displacement mean

and standard deviation for the 25% design load bending test and a 10 lb torsion test. Data

for sensors 100 and 110 were not used for subsequent analysis because they show a large

coefficient of variation. Results for the PA analysis are discussed next.

Probabilistic Analysis of the ATW Wing

The first step in any PA study is to examine all the parameters involved in the

problem and select those that are most uncertain. Often this step is somewhat subjective

because uncertainty data is a matter of engineering judgment. In our study, Young's

modulus was selected for analysis because for composite materials it varies significantly

from one reference to another and also because of their large impact on the system

response. Also, boundary conditions are critical. In the finite element model, several

springs are used to represent the boundary stiffness, for the update study only the root

bending stiffness is used. Table 3 shows the parameters used, uniform distribution

bounds, and the nominal values. Since the distribution is uniform, all values within the

bounds are equally likely. A uniform distribution conveys our lack of knowledge and

confidence in the nominal values. Assumed distribution functions should incorporate

information on parameter uncertainties gained through experience, previously observed

tests, or simply good engineering judgment.
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To conductthe study,UNIPASS(Ref. 6) First/SecondOrderReliability Methods
wereusedto evaluatetheMPPsolutionfor bothbendingandtorsion. UNIPASSreplaces
thevariablesdefinedasrandomvariablesin the NASTRAN input file and executesthe
analysisto computetheprobabilityvalue in Eq.2 andto determinetheMPPsolution.
To takeadvantageof the algorithmsin theUNIPASSprogram,a limit statefunctionwas
defined in terms of the predicted displacement vector

= ]_X IX 1 Xll X56 X66 X67 X77 and the measured test vector in Table 2

Y=[Yl Yll Y56 Y66 Y67 Y77]r as;

g(Ell,Ell,,E22,,Ec,kb )= yry- yrx (2)

When these two vectors are identical the limit state function is zero. To account for the

uncertainty in the measured displacement data, each component of the test vector y was

replaced with _ = Zo-+ fl where Z is a random variable from a normalized distribution

function, cr is the measured standard deviation shown in Table 2, and ¢t is the

corresponding mean value.

Table 4 shows the MPP solution obtained for each static load case, the probability

of observing those parameter values, and the corresponding sensitivity information. Note

that the bending solution, shown in the third column, has a probability of 1% compared to

the torsion solution probability of 63%. Although the bending solution is the most

probable solution when using bending test data, the corresponding probability is low,

therefore it is unlikely that the parameter values reported are the correct ones. In

contrast, the solution obtained when using torsion data has a higher probability value

indicating a more probable solution. Sensitivity values are provided to assess relative

importance of the various parameters. To properly compare values, the sensitivity needs

to be normalized by multiplying it by the mean of the parameter values. If one were to

use the nominal parameter values to normalize the sensitivity, the highest sensitivity

corresponds to E H followed by k b . Table 5 shows the predicted and measured

displacement using both sets of MPP values. Fig. 7 shows two plots for the cases shown

in Table 5 comparing test, updated model displacement predictions, and displacement

prediction when using the nominal set of parameters; Fig. 7a depicts results using the

MPP values for bending and 7b is the solution for torsion. When comparing the

numerical values from tests and the updated solution, individual errors can be as high as

40%, however, when comparing them to the prediction using the nominal values the

model has been improved significantly. Considering the torsion solution, parameter

changes up to 24% are required to reconcile test with analysis. When examining the

bending and torsion solutions it is apparent that the parameter values are moving in

opposite directions but the most probable parameter values are those obtained for torsion.

Solutions for this class of problems are heavily dependant upon the initial

distribution functions. Subsequent work to improve results needs to use a Bayesian

approach to allow for the initial parameter distribution functions to be updated based on

experimental data. Although this has not been emphasized, it is important to remember

the probability and MPP calculation relies heavily on the assumed distributions. To

simplify the analysis, the analyst can select simple distributions functions to gain

understanding of the problem but it is imperative that these distribution functions be
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updatedwhen more informationbecomesavailable. This is a direction that would be
addressedin thenearfuture.

Concluding Remarks

An initial study to evaluate the use of probabilistic approaches for the problem of

model update was presented. The goal was to include information on parameter

uncertainties known by the modelers to aid guiding the process of reconciling differences

between test results and analysis. A fundamental premise in this approach is that the

solution to the model update problem has an infinite number solutions, hence, seeking a

unique solution hides information about model errors that might be very important for a

certain class of problems. Rather than a single point solution, the engineer should have

probability distribution functions describing the full range of variations for an observed

quantity.

Using the UNIPASS probabilistic analysis code and data obtained from static

tests conducted by NASA Dryden in support of the Aerostructure Test Wing flutter

experiment, updates to parameters in the finite element model were obtained to reconcile

static test data with predictions from analysis. In the example, five parameters were

updated from their initial values. Also computed was the probability of those parameters

being responsible for the observed test results. Although results for individual sensor

values are not in full agreement, the overall system response was improved significantly

after parameter updates.
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Table1. Pressuresfor 25%Designloadcase

Location Pressure
1 0.116
2 0.277
3 0.146
4 0.014
5 0.049
6 0.129
7 0.021
8 0.045
9 0.092
10 0.007
11 0.026
12 0.038
13 0.042
14 0.069
15 0.011
16 0.027
17 0.034
18 0.027
19 0.040

Table2. ATW measureddisplacement

Bending 10lbsTorsion
25%Desi n load test

Location Disp. (in)- Disp. (in)-
(Std.Dev.) (Std.Dev.)

1 0.224-(1.42e-4) 0.437-(5.14e-4)
11 0.290-(1.23e-4) 0.220-(1.45e-4)
56 0.053-(2.21e-4) 0.102-(2.33e-4)
66 0.129-(1.97e-4) 0.095-(1.95e-4)
67 0.032-(1.92e-4) 0.064-(2.1le-4)
77 0.090-(1.94e-4) 0.058-(2.03e-4)
100 0.001-(2.00e-4) 0.002-(1.90e-4)
110 0.017-(1.92e-4) 0.003-(1.99e-4)

Table3. ParameterUncertaintydefinitions

Uniform Dist. Bounds
Component Parameters [Lower,Upper] Nominal

Spar Ell (lbs/in 2) 0.79x 107, 2.37x107 1.58x 107

Skin EH, (lbs]in 2) 0.74 × 10 6 , 3.90 × 10 6 2.67 × 10 6

Skin E22 s (lb s]in 2) 0.74 × 10 6 , 3.90 × 10 6 2.67 × 10 6

Core E c (lbs]in 2) 4.8x103,15x103 13.1x 103

Root kb (lbs/in) 2 x 104, 3 x 104 2.2 x 104
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Table4. MPP solutionfor staticcase

MPPBending
Component Parameters Pf=0.01

Bending
Sensitivity

Og/Ox

MPP Torsion

Pf=0.63

Torsion

Sensitivity

Og / Ox

Spar Ell (lbs/in 2) 8.42×106 9.54×10 -9 1.77×107 7.14×10 -9

Skin Ell s (lb s/in 2) 2.16 × 10 6 3.03 × 10 .9 2.64 × 10 6 3.66 × 10 .9

Skin E22, (lb s/in 2) 2.16 × 106 3.03 × 10-9 2.64 × 106 3.66 × 10 -9

Core E c (lbs/in 2) 7.70×103 1.01×10 -6 9.97×103 7.28×10 -7

Root kb (lbs/in) 2.19×104 1.95×10 -6 2.54×104 3.99×10 -6

Table 5. Comparison of displacement data for updated model

goc

Bending

MPP

Original Bending
Model Solution

Bending Pf=0.01

Disp. (in) Disp Disp.
Mean Std.

Dev. (in.) (in)

1 0.224-(1.42e-4)

11 0.290-(1.23e-4)

56 0.053-(2.21e-4)

66 0.129-(1.97e-4)

67 0.032-(1.92e-4)

77 0.090-(1.94e-4)

100 0.001-(2.00e-4)

110 0.017-(1.92e-4)

0.173 0.250

0.217 0.318

0.054 0.072

0.096 0.136

0.037 0.048

0.073 0.103

0.006 0.007

0.015 0.019

Torsion

Disp. (in)
Mean Std. Dev.

0.437-(5.14e-4)

0.220-(1.45e-4)

0.102-(2.33e-4)

0.095-(1.95e-4)

0.064-(2.1 le-4)

0.058-(2.03e-4)

0.002-(1.90e-4)

0.003-(1.99e-4)

Original
Model

Torsion

Disp.

(in)

0.442

0.295

0.131

0.107

0.090

0.076

0.013

0.007

MPP

Torsion

Solution

Pf=0.63

Disp.

(in)

0.425

0.261

0.129

0.098

0.090

0.069

0.013

0.006
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Fig. 4 Pressure load numbering and sensor locations
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Fig. 5 ATW Proof testloading25%designload

Fig. 6 Wing twist testatforwardboom-loading10lbs
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Fig. 7 Test and analysis comparison of MPP displacement solutions
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